

Creating and Annotating a Forced Colors Design System

• CSUN Conference: March 21, 2024
• Presenters

o Jesse Hausler, Principal Accessibility Designer at ServiceNow
o Omar Bonilla, Senior Accessibility Designer at ServiceNow

Safe harbor notice for forward-looking statements

This presentation may contain "forward-looking" statements that are based on our beliefs
and assumptions and on information currently available to us only as of the date of this
presentation. Forward-looking statements involve known and unknown risks,
uncertainties, and other factors that may cause actual results to differ materially from
those expected or implied by the forward-looking statements. Further information on these
and other factors that could cause or contribute to such differences include, but are not
limited to, those discussed in the section titled "Risk Factors," set forth in our most recent
Annual Report on Form 10-K and Quarterly Report on Form 10-Q and in our other Securities
and Exchange Commission filings. We cannot guarantee that we will achieve the plans,
intentions, or expectations disclosed in our forward-looking statements, and you should
not place undue reliance on our forward-looking statements. The information on new
products, features, or functionality is intended to outline our general product direction and
should not be relied upon in making a purchasing decision, is for informational purposes
only, and shall not be incorporated into any contract, and is not a commitment, promise, or
legal obligation to deliver any material, code, or functionality. The development, release,
and timing of any features or functionality described for our products remains at our sole
discretion. We undertake no obligation, and do not intend to update the forward-looking
statements.

Learning Goals

• Forced Colors Overview
• Forced Colors basics
• Common assistive technologies
• Users who benefit

• Design System for Forced Colors
• Designing for Forced Colors
• Understanding how the CSS Variables drive design

• Design Annotation
• Figma specification framework
• Understanding component states
• How to annotate designs for Forced Colors

• Consistency and Quality
• Using a shared color palette to align all stakeholders

Customer Example

• Service Agent says “Incoming case from a customer!
• Defect: Buttons and Tabs are not visible in Windows High Contrast mode

• Outlines are visible for buttons and tabs, but no label text is there.
• All content is the same white foreground color on a black canvas.

Customer Example (first fix)

• Engineer says “All fixed!”
• Buttons and Tabs are somewhat visible in Windows High Contrast mode

• Labels are now visible on tabs and buttons.
• However, functionality and states are still vague because all foreground

content is still white (no differentiation).

Customer Example (final fix)

• Designer says “Much better!”
• Buttons and Tabs are now visible in Windows High Contrast mode

• Labels are now visible on tabs and buttons.
• Functionality and states are uniquely treated and are now much clearer

visually.

Forced Colors Overview

Forced Colors Defined
Forced colors: A mechanism that leverages CSS media queries to support a user-defined,
limited color palette on a webpage.
Through a media query, forced colors is detected as active which triggers forced color
mappings to be applied in CSS.

User Intention

• Enabling Customization
• Users intentionally want to use color to identify object and state
• Users can choose to differentiate various objects and states with different

colors
• Users may choose colors that are intentionally below typical contrast

thresholds
• Figures: Three button-like elements are shown labeled “I’m a button”, “I’m

not a button”, and “I’m a button with focus.” Each of the elements receives a
different treatment in forced colors.

User Chosen Color Palettes

• A sample website is rendered in High Contrast Dark, High Contrast Light, and with a
User-Defined Theme in forced colors. This is meant to highlight the flexibility of
forced colors and its power to tailor the visual presentation of content to users with
low contrast needs, high contrast needs, or specific color combinations that are
more perceptible for them.

People Who Benefit from Forced Colors (non-exhaustive)

• Low vision users
• Users with colorblindness
• Users with light sensitivity

Forced Colors Technology

The underlying mechanism behind forced colors is a set of system-color keywords, which
allows colors defined by the user in their system settings or pre-set in their browser to be
passed through to a rendered page. In other words, the user is able to define a color palette
for common elements like hyperlinks, buttons, and disabled or inactive content, and the
browser draws on those user-selected colors to render their page in a color scheme that
works for them.

One of the most common ways to activate forced colors, especially when a custom theme
is desired, is to use the High Contrast or Contrast Themes feature in Windows, depending
on your version. There you’re able to manually specify 8 colors, which may be leveraged for
multiple CSS keywords, which we’ll discuss in a second. Windows includes a handful of
themes by default with the ability to create custom themes as well. In Chrome rendering
tools, you have the ability to activate a forced color theme there as well, but there are some
drawbacks. The feature is deeply embedded in the developer tools, and only offers a non-
customizable theme in a light and a dark variant. But, if you’re not on Windows and want to
leverage contrast themes for personal use or for testing, this feature is available in Chrome
for you.

Windows has the more powerful theme selection and customization capabilities in their
system settings, and as mentioned there are 8 adjustable colors available there. Some of
them, like Text, Hyperlinks, ButtonText, and Background, are used for multiple CSS
keywords. In addition, there are 4 keywords that are not adjustable in Windows, namely the
Mark and the SelectedItem pairings. These render in yellow and black, and blue and white.
Despite the constraints, we used the more granular CSS Color Module 4 variables as
intended, in the hopes that future assistive technologies will allow for that finer
customization that the CSS enables.

So let’s take you through the transformation of a piece of web content from its default
theme to a forced color theme selected by the user. Here we have a snippet of a page with
static test and a hyperlink beneath it. The background, or the Canvas, is white and the
hyperlink is blue which is the common default rendering.

In Windows High Contrast settings, the user has made some custom choices here. The
relevant ones in this case are Text, Hyperlinks, and Background.

White will be used for the foreground static text, yellow for hyperlinks and black as the
canvas or the background. What happens here is that once forced colors has been
detected as active, the browser will draw from these defined colors in the system to render
the page.

And the end result is shown on the right here, with the plain text being rendered as white,
the hyperlinks as yellow, and the canvas as black. Now, this is a basic example for
illustrative purposes, but the key takeaway here is that a user is able to define the
presentation for the content that they want and forced colors is the mechanism used to
transform that content according to their needs.

Forced Colors for Design Systems

Design System (Defined)

• Design System: A design system is a set of guidelines, design patterns, and reusable
components that may be used to create larger and more complex products and
features, which benefit from a more consistent design.

• Scalability
• Consolidated Assets
• Ready-made Building Blocks
• Consistency

Design Considerations

Consider: Default Appearances

• Know the Defaults
• Can we improve the readability of forced color designs?
• Can we emphasize additional states?

Figures
• WHC settings panel
• Button in default, focus, hover, and disabled states

Understand: CSS Groupings

• Understand CSS Groupings
• Use the proper variables to communicate component identity and state

• High-level Forced Color breakdown
• Static Content
• Interactive Content
• States

• Static Content

• Plain Text, SVGs, Container borders
• Canvas
• CanvasText

• Static Content Uses

• Static text
• Icons
• Non-interactive borders and dividers

Interactive Content Keywords

• Interactive Content
• Text-based (Links)

• LinkText
• VisitedText
• ActiveText

• Target-Based (Button-like)
• ButtonFace
• ButtonText
• ButtonBorder

• User Inputs
• Field
• FieldText

• Interactive Content Uses

• Buttons
• Clickable Cards
• Tabs
• Inputs

States and Emphasis

• States
• User Attention and Focus

Highlight
HighlightText

• Emphasis
Mark
MarkText

• Selection
SelectedItem
SelectedItemText

• Disabled Content
GrayText

States and Emphasis

• Focus state
• Disabled state
• Selection
• Marked text

CSS Groupings (Full Chart)

• Static Content
• Plain Text, SVGs, Container borders

Canvas
CanvasText

• Interactive Content
• Text-based (Links)

LinkText
VisitedText
ActiveText

• Target-Based (Button-like)
ButtonFace
ButtonText
ButtonBorder

• User Inputs
Field
FieldText

• States
• User attention and Focus

Highlight
HighlightText

• Emphasized Text
Mark
MarkText

• Selection
SelectedItem
SelectedItemText

• Disabled Content
GrayText

Consider: adjust:none

• Know when to let default colors break through
• The forced-color-adjust:none attribute can be used to pass through default colors to

the forced color rendering
• Use cases:

• Color selector: We need to see the original colors from a set of swatches

Design Annotations

Figma for Annotations
So as with many other places, our internal teams use Figma to create the specifications for
our components, and the benefit to that shared repository is having that centralized source
of truth that everyone can reference, and where updates may be made in one place and
propagated outward to other subcomponents or other dependent components.
Having a common annotation library is beneficial for ensuring that there's a consistent
format for communicating annotations in general, and particularly for forced colors.
Defining and embedding sample forced color themes is great for creating visual examples
of components rendered in forced colors, that engineers and testers can validate against.
Finally, Figma allows us to manage variants and states for components, and having forced
color logic defined for those different states will help you make sure that forced colors
works properly for all of those.

Annotation Assets

• At ServiceNow we have three broad categories of assets for documenting Forced
Colors. First is the component itself and all of its states or variants that receive a
specific treatment in forced colors. Second is the annotation kit, and there are many
publicly available accessibility annotation kits. We have one internally at
ServiceNow that we use as well. One asset in our kit is what we call the Accessibility
Line Bend tool, that may be easily placed on an artifact in the appropriate location,
with all of the forced color keywords embedded such that you can pick from them in
a dropdown. And finally, we have color swatches for the forced color theme that we
de.veloped in tandem with AssistivLabs for testing purposes in their cloud virtual
machines, which designs may use to test out their forced color mappings for the
appropriate perceptibility

Annotations: Button
As we mentioned before, the amount of states or variants can make the task of designing
for forced colors seem overwhelming, but they do tend to scaffold naturally. We’ll start here
by annotating a single component for forced colors, beginning with that component’s
default state. In this example we're using our own Now Button Stateful in the 'Bare' variant
which is a flat button style without a border in its default theme.

Annotations: Button – Prepare All States

• From there we’ll include some additional states. Here we've added a focus state
and a disabled state, which together account for the fundamental functionality and
states for this component. By default the focus state features a thick focus ring in
one of ServiceNow's theme colors. The disabled state is grayed out and lower in
contrast, which is the standard way of presenting that. So these three form the three
basic states for one of our buttons, but there's an additional layer to this….

Annotations: Stateful Button
…Selected states. Buttons at ServiceNow may be stateful in that they may be toggled to be
selected or unselected, which on the surface doubles the number of states that we have to
account for forced colors. For example, ServiceNow's buttons may be selected but
disabled, or in focus but not selected, and each of those states have considerations when
applying forced colors to them.

Annotations: Stateful Button – Default State
We can break this down the forced color designs for these states with some logical steps.
So let's start with the default and unfocused state. The identity or the purpose of this
component is button, or button-like, which means It's an interactive component with a
target area. For a component like this, we have a target boundary or border, a background
within that boundary, and foreground content within that border. To define the boundaries
of that area, we use ButtonBorder, and to define that background space within the border,
we use ButtonFace. And finally for we have the foreground elements within the boundaries
-- in this case we have an icon but often there's text as well -- and for that we use the
appropriately named ButtonText. So by breaking the component into its identity or purpose
and its state, you can methodically work through the forced color logic for your
components.

Annotations: Stateful Button – Focus State
Let's build upon that default state now by tackling the focus state. The goal here is to
indicate to a user that a button is in focus and actionable, and in this case we were
presented with a challenge: given that there is no explicit "focus" set of forced color
keywords, what should we do to indicate that focus state? We decided to use the Highlight
and Highlight text pairing for this, because this was the most appropriate way to highlight a
component without its state being changed in a persistent way; we are highlighting this
component to give a user a landmark, or a sense of location within the page.

Annotations: Stateful Button – Hover State
You may find it appropriate to use it to indicate hover as well as focus. We did for our design
system because our components also get a separate focus ring on the outside which is an
additional visual cue that separates it from a hovered component that is not in focus.

Annotations: Stateful Button – Hover State
 We also made a specific design choice to switch the roles of Highlight and
HighlightText for this particular state. In our button component, HighlightText serves as the
background while Highlight acts as the foreground. The reason we did this was because the
standard mappings made buttons appear "filled," which in our design language implied
they were primary or call-to-action buttons, which wasn't our intention for this state. Given
that we also have that separate focus ring, this approach lets us reserve the fill treatment
as a potential solution for highlighting primary or call-to-action buttons in future
enhancements to our forced colors of our design system. In the native HTML button it also
appears this way, but we also made icon and text Highlight as well, for clarity.

Annotations: Stateful Button – Disabled State
We use GrayText for any foreground content within a disabled component. In our case, we
are using GrayText for the border and the icon within a button, and leaving ButtonFace as
the background of the button. This was the best available way to communicate that a
component is indeed a button, and that the button is currently in a disabled state, given
that GrayText does not have an associated pair.

Annotations: Stateful Button – Selected State
Finally we have our selected state. We have a dedicated pairing for that, namely
SelectedItem and SelectedItemText, so we use those for the background and foreground of
the button respectively. While a selected state does imply some level of interactivity, we
still leave the border as ButtonBorder to offer that signal to the user of the component’s
purpose. And so with that we have a component that is perceivable as a button, and that it
is in its selected state.

We've now worked methodically through 6 unique combinations of states for a button,
applying forced colors in a way that is aligned with the intent of those colors and
perceivable for users who leverage them...

...while preserving the full functionality of the components no matter the color palette
chosen by the user. We started a based state, and a much smaller set of colors to work
with, and built up to these unique states that have their purpose and state preserved once
forced colors is active. Now that we've designed forced color presentation for our
component states, we now need to ensure that there is consistency between the original
design here, and the final product built by developers and validated by quality engineers.

Consistency & Quality

Shared Color Swatch

• Differentiation between types of text and backgrounds
• Includes colors fixed by Windows
• Figure: 17 forced color keywords with swatches in accordance with our testing

theme

Shared Color Swatch (cont.)

• Figma Templates and Library
• Educational Resources
• AssistivLabs Default Theme

Figma Color Swatches

• Designers: Design View
• Developers: Annotated View
• Quality: Forced Color Mode View

Recap

• Forced Colors Overview
• Forced Colors basics
• Common assistive technologies
• Users who benefit

• Design System for Forced Colors
• Designing for Forced Colors
• Understanding how the CSS Variables drive design

• Design Annotation
• Figma specification framework
• Understanding component states
• How to annotate designs for Forced Colors

• Consistency and Quality
• Using a shared color palette to align all stakeholders

Resources
ServiceNow Figma Community
figma.com/@servicenow
Adrian Roselli: WHCM and System Colors
adrianroselli.com/2021/02/whcm-and-system-colors.html
Microsoft Blog on HCM
blogs.windows.com/msedgedev/2020/09/17/styling-for-windows-high-contrast-with-new-
standards-for-forced-colors/
AssistivLabs
assistivlabs.com

http://figma.com/@servicenow
http://adrianroselli.com/2021/02/whcm-and-system-colors.html
http://blogs.windows.com/msedgedev/2020/09/17/styling-for-windows-high-contrast-with-new-standards-for-forced-colors/
http://blogs.windows.com/msedgedev/2020/09/17/styling-for-windows-high-contrast-with-new-standards-for-forced-colors/
http://assistivlabs.com/

Thank you!

